skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Noonan, John W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract 3I/ATLAS is the third macroscopic interstellar object detected traversing the solar system. Since its initial discovery on UT 2025 July 1, hundreds of hours on a range of observational facilities have been dedicated to measuring the physical properties of this object. These observations have provided astrometry to refine the orbital solution, photometry to measure the color, a rotation period and secular light curve, and spectroscopy to characterize the composition of the coma. Here, we report precovery photometry of 3I/ATLAS as observed with NASA’s Transiting Exoplanet Survey Satellite (TESS). 3I/ATLAS was observed nearly continuously by TESS from UT 2025 May 7 to 2025 June 2. We use the shift-stack method to create deepstack images to recover the object. These composite images reveal that 3I/ATLAS has an average TESS magnitude ofTmag = 20.83 ± 0.05, 19.28 ± 0.05 and an absolute visual magnitude ofHV = 13.72 ± 0.35;12.52 ± 0.35, the latter being consistent with magnitudes reported in 2025 July. When coupled with recent Hubble Space Telescope images deriving a nucleus size ofR< 2.8 km (H> 15.4), our measurements suggest that 3I/ATLAS may have been active out at ∼6 au. Additionally, we extract a ∼20 day light curve and find no statistically significant evidence of a nucleus rotation period. Nevertheless, the data presented here are some of the earliest precovery images of 3I/ATLAS and may be used in conjunction with future observations to constrain the properties of our third interstellar interloper. 
    more » « less
    Free, publicly-accessible full text available September 11, 2026
  2. Abstract We report initial observations aimed at the characterization of a third interstellar object. This object, 3I/ATLAS or C/2025 N1 (ATLAS), was discovered on 2025 July 1 UT and has an orbital eccentricity ofe ∼ 6.1, perihelion ofq ∼ 1.36 au, inclination of ∼175°, and hyperbolic velocity ofV ∼ 58 km s−1. We report deep stacked images obtained using the Canada–France–Hawaii Telescope and the Very Large Telescope that resolve a compact coma. Using images obtained from several smaller ground-based telescopes, we find minimal light-curve variation for the object over a ∼4 day time span. The visible/near-infrared spectral slope of the object is 17.1% ± 0.2%/100 nm, comparable to other interstellar objects and primitive solar system small bodies (comets and D-type asteroids). Moreover, 3I/ATLAS will be observable through early 2025 September, then unobservable by Earth-based observatories near perihelion due to low solar elongation. It will be observable again from the ground in late 2025 November. Although this limitation unfortunately prohibits detailed Earth-based observations at perihelion when the activity of 3I/ATLAS is likely to peak, spacecraft at Mars could be used to make valuable observations at this time. 
    more » « less
    Free, publicly-accessible full text available August 13, 2026